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General Electric Research Laboratory, Scheneclady, New York
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The transition between the helical and randomly coiled forms
of a polypeptide chain is discussed by reference to a simple model
that allows bonding only between each group and the third pre-
ceding. Two principal parameters are introduced, a statistical
parameter that is essentially an equilibrium constant for the
bonding of segments to a portion of the chain that is already in
helical form, and a special correction factor for the initiation of
a helix. A third parameter which specifies the minimum number
of segments in a random section between two helical portions has
only a minor effect on the results. The partition function for this
model is handled in two alternative ways, either as a summation
suitable for short chains, or in terms of the eigenvalues and eigen-
vectors of a characteristic matrix; the latter is more suitable for
long chains. A transition from the random to the helical form is

encountered as either the bonding parameter or the chain length
is increased. The critical value of the bonding parameter is unity
for long chains, while the sharpness of the transition depends on
the initiation parameter.

Depending on the values of the bonding parameter and the
chain length, one of the following configurations dominates: ran-
dom coils, single helices with occasional disorder at the ends, and
for longer chains, helices occasionally broken by random sections,
In rather narrow transition regions, mixtures of these forms may
be found. A diagram is given that displays the relationships of
these forms.

The theory is compared with published data on polybenzyl-
glutamate with fair agreement.

I. INTRODUCTION

OTY, Blout, and co-workers! have recently found
that polypeptide chains in solution can be re-
versibly converted from the randomly coiled form to
the @ helix of Pauling ef a/? The transformation is
remarkably sharp. A change of a few degrees in tem-
perature or a few percent in solvent composition is
sufficient to complete it, and it seems fully to merit the
term ‘‘phase transilion” that has been applied to it.!®
The polypeptide chain consists of amide groups
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connected by intermediatry carbon atoms. In the
« helix, the hydrogen atom of each amide group forms
a hydrogen bond with the oxygen atom of the third
preceding. amide group. We shall refer to an amide
group plus one adjacent carbon as a segment of the
chain.

The amide group is a rigid planar structure. How-
ever, according to Pauling et al.? there is some freedom
of rotation about the bonds to the adjacent carbon
atoms. Therefore, if the hydrogen bonds are broken,
the chain can assume the randomly coiled configura-
tions usual to chain polymers.

Since there can be hardly any doubt that the trans-
formation would occur in a single, isolated chain, we
have the novelty of a rather sharp transition in a one-

1 (a) Doty, Holtzer, Bradbury, and Blout, J. Am. Chem. Soc.
76,4493 (1954); (b) P. Doty and J. T. Yang, ibid. 78, 498 (1956);
{c) Doty, Bradbury, and Holtzer, 4bid. 78, 947 (1956); (d) E. R.
Blout and A. Asadourian, 7bid. 78, 955 (1956); (e} P. Doty and
R. D. Lundberg, ibid. 78, 4810 (1956); () P. Doty and K. Iso
(private ‘communication).

2 Pauling, Corey, and Branson, Proc. Natl. Acad. Sci. U. S,
37, 205,241 (1951).

dimensional system. Transformations in other such
systems, such as the one-dimensional ferromagnet’+*
are quite diffuse. Furthermore, it has been shown® that
different macroscopic phases cannot coexist in a one-
dimensional system.

The transition is of obvious importance to the full
understanding of the formation and stability of pro-
teins. The construction of a theory should therefore be
interesting from several points of view.

This paper presents a simple model of the chain
that facilitates calculation of the dependence of the
partition function on the hydrogen bonding. This
model gives a rather sharp transition from the random
to the helical form as the strength of the hydrogen
bonds is increased beyond a critical value, in agree-
ment with the experimental observations.

The sharpness of the transition is due to the fol-
lowing consequence of the model. The formation of the
first turn of the helix is difficult because of a large
reduction of entropy. Once formed, however, this turn
acts as a nucleus to which further turns can add by
hydrogen bonding. Thus this transformation has the
property of nucleation characteristic of other sharp
transitions.

Associated with the tendency to nucleate is a property
that might be called a boundary tension. That is, such
faultsin the helical structure as exist tend to consist of
a number of missing hydrogen bonds at adjacent seg-
ments, rather than of missing bonds distributed at
random. Further, disorder is propagated inward from
the ends of the helix, in a way similar to the inward
propagation of disorder from the surface of a crystal
lattice.

3 E. Ising, Z. Physik 31, 253 (1925).
( "H.) A. Kramers and G. H. Wannier, Phys. Rev. 60, 252, 263
1941).
5 1. Landau and E. Lifshitz, Statistical Physics {(Oxford Uni-
versity Press, New York, 1938), p. 232
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PHASE TRANSITION BETWEEN HELIX AND RANDOM

Schellman® has presented for this transformation a
very simple theory, in which he considers special effects
at the ends of the helix, equivalent to our nucleation,
but ignores the possibility of alternation between helix
and coil in the middle of the chain. Further, the transi-
tion appears in the theory as perfectly sharp, although
dependent upon chain length. Our theory, described
below, differs in that it gives a diffuse transition but
confirms the dependence on chain length. In addition,
it yields a convenient description of the alternation of
helical and coiling regions which is important under
some circumstances with long chains.

The treatment in this paper differs in another way
from that of Schellman. The latter uses the heat and
the entropy of adding a segment to the helix as his basic
parameters. We prefer to employ two statistical param-
eters, one for the nucleation of the helix and one for its
further growth. While both methods are equally cor-
rect, the expression of the results appears to be some-
what more direct in terms of the statistical parameters.

II. THE MODEL

This section presents a simple model of the chain
that is intended to represent the significant physical
features of the system, and at the same time is amenable
to evaluation by simple means. Specifically, the model
distinguishes between the contribution of a bonded
segment and of an unbonded segment to the partition
function, and additionally considers the influence of
the state of neighboring segments on these contribu-
tions. To describe the model in detail, we first have to
establish a notation for configurations of the chain.

It is convenient to base the description of the chain
on the helical configuration. We assume that a given
state of the chain can be completely described by the
state of the oxygen atoms alone; i.e., by a statement as
to whether or not each is bonded to the hydrogen of
the third preceding segment. This amounts to assuming
that bonding of a segment, if it occurs at all, is always
to the third preceding segment. The state of a chain
of » segments can then be described by a sequence of
n— 3 symbols, each of which can have one of two values.
We establish the convention that the first three segments
are always unbonded. This amounts to selecting as the
“‘beginning” of the chain that end of the helix that has
three unbonded oxygen atoms. If the digit 1 represents
a bonded oxygen atom and O an unbonded atom,
then a state of the chain is described by a sequence
such as

000111000011 - - -.

Since our object is the writing down of a partition
function, we must now make some specific assumptions
about the statistical weights to be attached to par-
ticular states. Our concern lies primarily with the
thermodynamics associated with the transition from

K J. A. Schellman, Compt. rend. trav. lab. Carlsherg, Ser. chim.
29, No. 15 (1955).
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random coil to helix; hence, it is not necessary to de-
scribe the quantum states or phase space of the indi-
vidual segments in detail, as long as the relative
weights of the random and helical forms are correctly
represented. The following simple set of assumptions
about the relative weights appears to be adequate.
The statistical weight™® of a given state of the chain is
assumed to be the product of the following factors:

(1) The quantity unity for every 0 that appears
(unbonded segment).

(2) The quantity s for every 1 that follows a 1
(bonded segment).

(3) The quantity os for every 1 that follows u or
more 0’s (boundary between bonded and unbonded
regions).

(4) The quantity O for every 1 that follows a number
of O’s less than u.

The effect of assumption (4) is that sequences of less
than u zeros do not appear. For the « helix, u is usually
considered to be about three.® The meaning of the first
three weights is as follows. The factor umity is arbi-
trarily assigned as the statistical weight of a segment
when it is not bonded into the helix. The factor s meas-
ures the contribution to the partition function of a
bonded segment relative to that of an unbonded seg-
ment. This factor contains a decrease in statistical
weight owing to restriction of freedom of motion, but
is enhanced by the Boltzmann factor resulting from
the bond energy. Finally, an abnormally large decrease
in statistical weight is assumed to be caused by the
first bond after u or more unbonded segments since
such a bond decreases the freedom of the segments
intervening between the bonding oxygen and hydrogen,
as well as restricting the freedom of the bonding seg-
ment itself. Since the same Boltzmann factor is in-
volved, this contribution to the partition function is
written os, where ¢ is less than unity.

These assumptions constitute a highly simplified
representation of the problem. The formalism is
capable of dealing with more detailed assumptions
without undue difhculty, but our present knowledge is
too incomplete to justify a more refined model. For
example, one might introduce a set of ¢’s, o(%), o
give the decrease in statistical weight due to a bond
following %2 unbonded segments. The plot of o(k)
versus k would be expected to look like the curve shown
in Fig. 1. The assumption of a single value of ¢, and the
ban on sequences of less than u 0’s, is the approxi-
mation shown by the dotted line.

There are two nonrigid bonds in each segment.? If
the degree of restriction of the phase space of each on
entering the helix is r, then we should have s propor-
tional to #2. Similarly, if the formation of a bond

* By statistical weight we mean the factor that a segment con-
tributes to the partition function, including, if appropriate, a

Boltzmann factor; it is not just the number of quantum states,
in contrast to one popular usage.
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Fic. 1. The weighting factor o (%) for the initiation of a helix
after k unbonded segments (schematic). The approximation used
in this paper is represented by the dashed line.

restricts to the same degree the segments intervening
between the oxygen and hydrogen atoms of the bond,
we should have ¢s proportional to #% with the same con-
stant, since there are six nonrigid bonds per turn.
Then we have g=1r% Since r can hardly be greater than
about 1, ¢ must be of the order of 1072 or less. The result
is that the first turn of the helix can only be formed
with difficulty.

We neglect several other possible effects that might
have to be considered in a complete treatment. For
example, one might introduce a correlation between the
statistical weights for hydrogen bonding in one turn
of the helix with the presence or absence of bonds
in the preceding turn. This has been considered by
Hilly” but without the correlation between successive
bonds in the same turn of the helix on which we base
the present paper. In our view the interactions between
successive turns is likely to be of secondary importance
compared to the interactions within a turn. We also
neglect the possibility of hydrogen bonding to other
than the segments characteristic of the alpha helix.
This phenomenon would not be expected to occur
except when the alpha helix was unstable, but under
these conditions very few hydrogen bonds would form
anyway; therefore we do not believe that the phe-
nomenon is ever of major importance. Further, we as-
sume that only helices of one sense, right- or left-
handed, can form with a given chain; this seems to be
in accord with experiment for all polypeptides bearing

n—3

> k(n—k—2)s*

6=

(n—3) [1/o+7§k (n—k—2)s*]
(n—3) (s—1) =2+ (n—3) (s—1) + 25 Js+2
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side groups, where the side group interaction is ap-
parently strong enough to establish a preference for
one handedness over the other. Finally, we make no
explicit reference to interactions between the side
groups; to a considerable extent the effects of these
interactions can be included in the parameter s.

III. MATHEMATICAL TREATMENT

Direct Derivation of the Partition Function and the
Probability of Bonding

A formal representation of the partition function @
for a chain of #» segments may be obtained from the

" above assumptions by direct enumeration of the num-

ber of ways of arranging a given number of zeros and
ones in a chain always starting with three zeros. For
example, with u taken as unity, we have obtained the
formula

(n—2)/2 n—1-2

Q=1+ 21 N L Gt L

M=) k=) (n—k—1—2) W

where (n—2) /2 is the largest integer less than (n—2) /2.
Though this formula does not appear to be attractive
for calculation in general, it is useful when the product
of no is small and s is appreciably greater than unity,
since then only the first term of the summation over /
is important. It will be shown that for rather short
chains these are just the conditions under which the
helix is formed. Physically, this corresponds to con-
ditions under which only one helical section (unbroken
sequence of 1’s) would be expected.

It is easy to show that the expression (d InQ/d Ins)
is the average number of hydrogen bonds formed in

.the chain at a given value of s, since the number of

hydrogen bonds in any state is equal to the power of
s in the corresponding term in the partition function.
We define 8 as the fraction of possible hydrogen bonds
formed,

1 dInQ

- (n—3) dlns @)

Then, keeping only the first term of the summation

over /, we get from Eq. (1),

(3a)

(3b)

These formulas are useful for calculation for small
values of #. Since they are valid only when there is one
unbroken helical sequence in the chain, they are inde-

7T. L. Hill, J. Polymer Sci. 23, 549 (1957).

(n—3) (s—1) {1+ (s— 1)z /o—[(n—3) (s—1) +s]s ™2}’

pendent of the parameter u which specifies the mini-
mum possible number segments involved in a break
in the helix. It appears, however, that any attempt
to use all the terms of Eq. (1) would lead to very com-
plicated expressions for large #. Fortunately, other
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methods are available, and these will be discussed in
the following section.

The Matrix Method

There are several well-known methods for evaluating
complicated partition functions, e.g., the method of
the maximum term and the method of steepest descents,
but one method, the matrix method*?* is particularly
well adapted to this chain problem, and to it we shall
confine our attention. While the method as applied
to infinite chains has been adequately described in the
above references, we have found it desirable to extend
its scope to include finite chains. For this reason we
give a brief discussion of the method.

Formally the method is capable of taking into ac-
count interactions between distant segments as well as
nearest neighbors. Our formal description will be given
for the general case. Much of the later development is
in terms of nearest neighbor interactions only (u=1),
but a model which includes certain longer-range effects
is also discussed (u=3).

If the physical situation requires the inclusion of
effects between segments whose positions in the chain
differ by the integer p, the matrix method requires
the state description of the chain to be in terms of the
“joint configuration” of p successive segments. Fol-
lowing Kramers and Wannier, we use an indexing of
states based on binary numbers. To illustrate, let
u=3. The various configurations of a group of three
segments are described by sequences of 0’s and 1’s such
as 110. The sequence can be interpreted as a binary
number, and we define a single index for the configura-
tions as the value of this binary number. Thus,

State Index
000 0
001 1
010 2

3

011

and so on. There are 2# possible states for a group of u
segments.

The matrix method involves operations on a sta-
tistical weight vector a;. This column vector has 2#
components, one for each joint configuration of the
segments {—u+1, i—u+2---, 4. Each component,
a;, Is the statistical weight of the lth joint configura-
tion of the segments :—pu-+1 through 7, including the
contributions to the statistical weight of all compatible
configurations of the preceding i—p segments. The
partition function of the chain is just the sum of all the
components of a,, where # is the number of segments
in the entire chain.

8 E. W. Montroll, J. Chem. Phys. 9, 706 (1941); G. F. Newell
and E. W. Montroll, Phys. Rev. 25, 159 (1953).
9 E. N. Lasettre and J. P. Howe, J. Chem. Phys. 9, 747 (1941).
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The vectors a,, 2,, and a; are taken to be
p<4, (4)

since the first three segments cannot bond to preceding
hydrogens. If x is equal to or greater than four, further
consideration may be necessary to establish ay, -- -, a,.
The succeeding discussion is for u <4, but the necessary
modification for u> 4 is formally a minor one.

As long as 7 is greater than the larger of 3 and p,
the vectors a; can be generated by the use of a 2#X2#
matrix operator M,

;= A= Q3= (11 01 0; N 0))

a,-TzMai_lf, (5)

where the symbol T indicates the transposed or column
vector. The matrix embodies the physical assumptions
of the problem. The element M;; is the factor to be
multiplied to the statistical weight upon adding the
ith segment, if the segments ¢ through {—u+1 form
joint configuration 4 while the segments 7—1 through
i—p are in joint configuration /. (For u greater than 1,
the matrix will have at most the fraction 21-# of its
elements nonzero.)
The vector a, is given by

a, =M"a,, (6)

and the partition function is
O=uwM™ gl (7a)
a=(1,0,0,---,0), (7b)
w=(1,1,1,---,1). (7¢)

Calculations based on Eqs. (7) are relatively easy.
If the matrix M can be diagonalized,

A=T"MT, (8)
the diagonal matrix can be easily raised to the required
power; the elements of the diagonal matrix A* are the
kth powers of the elements of A. When % is large the
kth power of the largest element of A is so much greater
than the others that it alone needs to be considered;
thisis the classical case discussed in the references.t8.?

The diagonal elements of A are the eigenvalues of M.
Corresponding to each eigenvalue are two eigenvectors,
a row vector and a column vector, since M is not sym-
metrical. The row vector is the eigenvector for M
operating to the left and the column vector for M
operating to the right. The column eigenvectors con-
stitute the columns of T and the row vectors the rows
of T,

The matrix M is unsymmetrical, and there are cer-
tain unsymmetrical matrices that cannot be diagonal-
ized. The matrices encountered in our work can in
general be diagonalized, although in the limiting case
where ¢ is zero a matrix is formed that cannot be.
This limiting case is that of a perfectly sharp transi-
tion. However, this limit can be evaluated after the
entire computation has been done for finite o.
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Average States of Individual Segments

The model makes it easy to obtain approximations
to the state of any given segment of the chain. The
statistical weight to be attached to a given joint
configuration of the segments (i—p+1) through ¢
is given by the sum of the statistical weights of all
configurations of the entire chain consistent with the
given joint configuration. Now the vector,

at=Misdl, (9)

has components which are the aggregate statistical
weights of the possible joint configurations of segments
i—u+1 through 4, taking account also of the preceding
part of the chain. In a similar way the row vector,

bim (oM"—i, (10>

has components which are the aggregate statistical
weights provided to each joint configuration by the
states available to the remainder of the chain.

The definitions of a; and b, are such that

b.-a,/f=0, (11)

since Q is the sum of all statistical weights. The proba-
bility that segments i through i—pu+41 are in joint
configuration / is therefore

pi(D)=(1/Q)b;a: (12)

Several special cases of Eq. (12) are of interest.
First let us consider the state of a segment near the
middle of a long chain. Then, by neglecting large powers
of all eigenvalues of M relative to the same powers of
the largest, \o, we may express a; and b, in terms of
the principal eigenvectors only:

o=l
b,'= )\o"“i(ZTko) (Too“l, Tof'l, Tﬂz_l, trry Tﬂp—lhl);
&=0

a;= Aai':; Tgo_l( Tuﬂ, TIO; T20, T, Tp—l,ﬁ) s (13}

where p=2# Equation (12) then gives the simple
expression,
b;a,
pill) ==~ l
Z’bz’,la'i,l
=0

1If the segment of interest is near the end of a chain,
the approximation involving the largest eigenvalue
can be applied to the a vector but not the b vector.
This leads to an expression
2:{0) =p———--—_zl’z'le , i=n
E’bi ,lTIO
=0

for the probability that the joint configuration is
state I. Simplifying the expression further depends
on the form of the matrix M; later an approximate
form will be given.

It is also of interest to discuss the occurrence of

=TTy (14)

(15)

?

B. H. ZIMM AND j. XK. BRAGG

breaks in the helix. Such a break (unbonded section)
must be bounded by the configurations 10 and 01,
i.e,, it is described by a sequence such as - --100001- - -.
According to Eq. (14) the probability of the sequence
01 at the (i—1)th and sth positions near the middle of
the chain, which is equal to the probability of the
sequence 10, is

=3 p—3
POy =2"p:()= 2" Tor T,
=1

==l

(16)

where the double-primed sum includes only every
fourth term, /=1, 5, 9, .- - p— 3. This formula applies
when p>2. The special case p=1 will be discussed
at a later point.

The Form of the Operator M

The matrix M is of order pXp, where p=2% Only
certain elements can be nonzero. The assumptions
listed above give a matrix of the form illustrated below
for the case of u=3:

1 0001000
es 0 0 0 0 0 0 O

0 1000100

(17)

0 0010001

60 00 s 00 0 5

It can be shown that the characteristic equation of the

matrix,
| M—1I\ =0, (18)

where I is the unit matrix, can be reduced in this case

to
M1 —XY (s—A) =gs.

Furthermore, the trace is 1+5, independent of .

Since o is small, approximations to the roots of M
are 1 and s with u—1 very small roots, provided ¢'/#
is less than unity. Therefore the nature of the partition
function, which depends mainly on the large eigen-
values, will be to a large extent independent of 4.
This being the case, we shall illustrate in most detail
the case u=1. In a later section we shall give some of
the results of the case p=3. In the case u=1 the steps
described in the foregoing are especially simple.

The matrix M, for u=1, is

()
g5 S

(19)

(20)
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The characteristic equation is
(1—=X) (s—A) =0s, (21)
and the roots are
A=3{14+s[(1—s5)2+4dos P}, (22)

We designate the larger of these by A, the smaller by
A1 The transformation that diagonalizes M is

1 1
T~<>\0—1 >\1—1>’ (23)

HELIX AND RANDOM COIL 531

1 ( AM—1 —1)
M—A\—=A+1 1)
The expression for the partition function, Eq. (7a), is
O=(1, H)M*3(1, 0)t= (1, ) TA*T-1(1, 0)t, (25)
which becomes, using Eq. (22) and the fact that

ANt+M=1+s5,
0= 3\9:‘*2()\0—5) A2 (s— M)
Ao—A;
According to Eq. (2), the average number of hydrogen
bonds is

T-1=

(24)

(26)

0="[s/(n—3) H[(n—2)N'/ A+ (A= 1) / (Ao—5) I\g"2(No— )
FL=2)M A (=2 /(5= M) 25— Ap) /DA™ 2(ho— 5) M2 (s— Ay) ]—( ‘")(A""”‘f), (27)

where the prime denotes differentiation by s.

In order to discuss the state of a particular bond, say
one in the middle or near an end of the chain, we need
the vectors a; and b;. From Eqs. (13), (23), and (24)
these are

=[N (Ae—5)/(Mo—A) J(1, X—1),  (28)
b= A"/ (o= M) J(No—s, 1) (29)

to the approximation involved in Eq. (13). Equation
(14) gives directly the probability of the state / (0 or 1)
at the ith segment near the center of the chain as

pi() =Ty Tp.

The state of a segment near the end of a long chain
is approximately given by Eq. (15). This can be
simplified for large s in the present case by actually
computing successive powers of the matrix (20). If a
small number of these are calculated, and terms
involving ¢ are dropped, it may be seen that the
vector b;, Eq. (10), is approximately

(30)

b=, 145+ - +57). (31)
Then Eq. (15) yields
pu—i(0) = Too/[ Tot Tro(1 45+ - - +579) ] (32a)
=1/[14+ N—1) (I4s+---+s5 ] (32b)
But for large s, Ao= 5, so that we have
Pri(0) =5~ CHD - s>1, (33)

The end segment has the probability s of being un-
bonded, the next segment the probability s72, and so
on. The mean number of unbonded segments at one
end, obtained by summing over the above probabilities,
is 1/(s—1). These results are valid only for ‘chains
long enough so that the two ends do not influence each
other. A formula for short chains is given in the next
section.

The general formula for computing breaks in the

n—3/\ Ao—A\1

chain, Eq. (16), cannot be used when u=1. However,
it is easy to show in analogy to Eq. (14) that the
probability of a sequence 01 near the middle of the
chain, P,(01), is

PO1)=ToMuTrw/re, n=1. (33a)

To illustrate these formulas, approximation may be
made to the roots of Eq. (21). Since 01, we have the
results shown in Table I. Then the probability of an un-
bonded segment, p,(0), near the center of the chain is,
from Eq. (14),

1—os/(s—1)% s<1,
% s=1,
os/(s—1)2, s>1. (34)

From Eq. (33a) the probability of a change from
bonded to unbonded region, P;(01), at any given
segment near the middle is

os/(1—s), s<1,
(0)¥/2, s=1,
a/(s—1), s>1. (35)

The probability that the last segment of a short
chain is bonded is of interest in connection with the
polymerization kinetics. We can find the formula from
Eq. (10) with Egs. (8), (23), and (24),

A" =A%) (s— M) (M=)

pu(D)= AN 20— $) NP (s—N) (36)
B TasrLE L.
s<1 s=1 s>1
e =
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This reduces to a simple form if we use the above ap-
proximations to the eigenvalues and assume that
ns™™ is much less than unity:

os(s—1) (sm3—1)
P"(1)= n—1 9
as" 14+ (s—1)
When # is large this agrees with Eq. (33).
We note in passing that the above approximate

eigenvalues substituted into Eq. (27) for 8 yield Eq.
(3b) if the first power only of ¢ is retained.

s>1.

(37

The Case of u=3

The case of u=3 is of special interest because it has
been assumed® that this corresponds to real polypeptide
chains, The right-hand and left-hand eigenvectors are
respectively:

(1, os/\, a5/A2, as2/A%, A—1, 0, s(A—1), £(A—1))1,
(38a)
/ A—1 1 Aa—11x-11 )\——1>

{(38b)

In these formulas the eigenvalue, Ay or Ay, correspond-
ing to the desired eigenvector is to be inserted for A.
These eigenvalues are the two largest roots of the
secular equation, Eq. (19). For s>1 we have the
approximations,

M=s+a/s(s—1),
M=1—0s/(s—1).

(39a)
(39b)

We omit other formulas for the eigenvalues since this
case differs from that of p=1 only when s is large.

IV. RESULTS AND DISCUSSION

The discussion of this problem is somewhat com-
plicated by the uncertainty regarding the value of u,
the parameter that represents the minimum number of
hydrogen bonds that can be broken in one sequence.
The formulas are generally simplest when u is assumed
to be unity, although some larger value, perhaps three,
is more realistic. Fortunately, we find that many of the
interesting results are practically independent of the
value chosen. We shall therefore give the discussion in
terms of u equal to unity, except where we consider
breaks in the sequence of hydrogen bonds in long
helices.

The Transition

The first noteworthy result is the existence at large
#n of a transition which becomes sharper as ¢ is de-
creased. For very large » the partition function is
dominated by the largest eigenvalue, Ay, raised to the
(n—3) power. The fraction of hydrogen bonds is
then given approximately by
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Fi1G. 2, Fraction of intersegment hydrogen bonds © as a func-
tion of the equilibrium constant s for various values of the initia-
tion parameter o.

6=4d In\y/d Ins. (40)

The results from this formula are shown in Fig. 2 for
the case of p=1 and various values of ¢.

In this case when ¢ is unity there is no interaction
between the states of successive segments, and s is
just the equilibrium constant for the formation of the
hydrogen bonds; the fraction of hydrogen bonds then
shows a gradual rise with increasing s according to the
formula

f=s/(1+s). (41)

Quite different behavior appears at the other extreme
when o approaches zero; in this case there is an almost
sharp transition at s=1 corresponding to the inter-
section of the two branches of Ay, 1, and s. In view of
the form of Eq. (21) and since A is very nearly unity
at the transition, the shape of the transition curve is
not perceptibly dependent on the parameter p which
specifies the minimum number of hydrogen bonds that
can be broken at one place. The value of unity is thus a
critical value of s at which long chains go substantially
into the helical form.

Critical Size
In a corresponding fashion there is also a critical
value of the size # at which substantial helix formation
appears for any given value of ¢ and for s greater than

unity. From Eq. (3b), it appears that this value is
approximately that at which

(s—1)3 =g, (42)

The actual behavior of 8 as a function of # is shown in
Fig. 3 for several values of s and ¢. These results were
calculated from Eqgs. (3a, b) as well as Eq. (27); a few
values were also calculated by the corresponding for-
mulas for the case of u=2, but the differences were
insignificant. Thus the critical size effect is also inde-
pendent of u, at least at small #.



PHASE TRANSITION BETWEEN HELIX AND RANDOM COIL

(Ot

P

poantil )

5 7 10 20 50 100
CHAIN LENGTH, n

F1c. 3. Fraction of intersegment hydrogen bonds © and prob-
ability that the last segment be hydrogen-bonded, #.(1), Eq.
(37), as functions of the number of segments » at various values
of s and ¢. While Eq. (37) specifically refers to the case where
#=1, the results would not be significantly different for other
values of u. Solid lines, © at c=10"* and the indicated values of
s; thin dashed curve, © for s=2 and ¢=10"2; heavy dashed
curves, p.(1) at ¢=10"* and the indicated values of s.

The critical size effect offers the most definitive
method of determining the two important parameters
s and o from experimental data on the fraction of
hydrogen bonds. If a sequence of polymers of different
chain lengths is available, the data may be compared to
theoretical curves for different s and ¢ until the best fit
is found.

Equilibrium Constants

Equilibrium constants can be defined for various
processes involving the helix-coil transition. For ex-
ample, a sort of an equilibrium constant is the ratio of
the number  of hydrogen-bonded segments to the
number of unbonded segments, which is 6/(1—8).
Another ratio accessible to direct measurement (by
optical rotatory power) is the ratio of the number of
segments in helical form to those in random form; this
is [(n—3)8+3]/(n—3)(1—6). The ratio of the
number of molecules with any amount of helical
content whatever to those without is another equi-
librium constant, and is equal to Q—1.

Even the parameter s can be thought of as the
equilibrium constant for a certain process, that of
incorporating into a helical section the first adjoining
segment from a long random section, since the ratio
of the aggregate of the statistical weights of those
states with a helical section of, say, #41 segments in
length to the aggregate of the weights of those states
with a section of k segments is practically s, if the
adjacent random section is suffiicently greater than
the minimum length u. By a familiar thermodynamic
relation we then have

dIns/dT=AH/RT?, (43)
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where T is the absolute temperature, and AH is the
enthalpy change on converting one segment from the
random to the helical form under the conditions
described in the foregoing,

Temperature Dependence and the Heat of Helix
Formation :

Experimental data are available in some cases for
the variation of § with temperature, but the values of s
and ¢ cannot be obtained from these curves unless
data are available for different chain lengths. For
example, data of Doty and Yang'® and Doty and Iso'®
for polybenzyl-L-glutamate are shown in Fig. 4 to-
gether with the theoretical curves for two values of ¢.
In each case the relation between s and the tempera-
ture has been adjusted to give the best fit to the
experimental curves. It is evident that a small change
in d Ins/dT would be sufficient to make either value
of o satisfactory for either value of # alone, but with
the two together the choice of ¢=2X10"* with
d Ins/dT=0.00614 is clearly preferable.

From Eq. (43) we immediately calculate that AH
is +990 cal/mole. This heat, it should be remembered,
includes the heat of desorption of solvent from the
random-form segment when the latter is transformed
to helix. The positive sign of AH, corresponding to
heat adsorbed on helix formation, would be unintel-
ligible otherwise.

In fitting the curves to the data we have assumed
that o does not depend on the temperature because of

1

o= 0 T

In 5=.00614 {T-Tc}

Fic. 4. Comparison of theoretical curves of fraction of seg-
ments intramolecularly hydrogen-bonded © with observations of
Doty and Yang!®) and Doty and Iso¥? on polyy-benzyl-L-gluta-
mate. The fraction intramolecularly bonded was assumed to be a
linear function of the optical rotation and Ins was assumed to be
linear in the temperature T; T is the temperature at which © is
0.5. Circles, Doty and Yang; triangles, Doty and Iso. Solid lines
correspond to o==2X107%; dashed lines, ¢=1X10"% Doty and
Yang’s measurements on a sample of degree of polymerization, »,
of 84 have been omitted because there is some doubt about the
molecular-weight distribution of this sample (private communi-
cation from Professor Doty).
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Fic. 5. The n—s plane, calculated for =10, and showing
the characteristics of the chains in the various regions. The two
contours of constant © are the (arbitrarily chosen) boundaries of
the transition region. The line of constant » corresponds to Eq.
(45). The dotted line is the circuit described in the text.

the interpretation given earlier in terms of a ratio of
available phase space; this ratio should not change
much with temperature. We might hazard a guess that
o should be likewise independent of solvent, depending
only on the constitution of the polymer. Data are not
vet available to test this point.

The Dominant Configurations

We turn now to the description of the dominant
configurations of the chains under various conditions.
The situation is epitomized in Fig. 5. For small values
of n or s the chains are in the random, unbonded
configuration. At larger values of # and s the helical
configurations dominate, but in different ways in the
sectors of moderate # and large s or large # and mod-
erate s; in the former sector each chain contains only
one unbroken helical section, in the latter, several.

For the case of u=1 we have already seen how the
probability of a break in the helix depends upon ¢ and
s, Eq. (35). The case of u=3, corresponding to no less
than three consecutive segments being unbonded at
once, is more realistic, however, when both n and s
are large. Let us define » as the average number of
unbroken helical sections per molecule; by analogy
with Eq. (2) this is given by

v={(d InQ/d Ins). (44)

With the eigenvalues and eigenfunctions of Egs. (38)
and (39) we can calculate easily the necessary terms
of Q and obtain v by differentiation. The result is

v=o[n/s*(s—1)+0(1)],

where 0(1) stands for terms of order unity. Likewise,

(45)
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by the use of Eq. (15), the probability of finding a
particular segment unbonded is

P(0)=0¢(35—2)/s%(s—1)2 (46)

Since v is approximately the average number of se-
quences of unbonded segments, the ratio of #P(0) to v
is the average number of unbonded segments in one
sequence; this is

(3s—2)/(s—1).

The average number of unbonded segments at a break
in the helix is thus three or more, depending only on the
value of s.

Returning to Fig. 5, we see that the two sectors of
the region of helices are separated from each other
by a line of constant v. The exact value of vis arbitrary;
we have selected v=14-1In2 for purposes of illustration,
since along this line half the chains contain one un-
broken helical section.

Let us proceed in sequence through the five distinct
regions of the diagram to become acquainted with
their characteristics, following the circuit indicated
by the dotted line. We begin in the region of random
chains at point 4 where # and s are small. If we main-
tain chain length » and increase the equilibrium con-
stant s, we soon enter the transition region B, where
chains containing helices start to appear in the en-
semble. The critical value of s for a given # is the one
that satisfies Eq. (42). Equation (42) implies that the
aggregate statistical weights of the states containing
helices are approximately equal to those of the random
states. This has an interesting consequence; since 6
is near one-half, about half of the chains of the ensemble
must be nearly completely in the helical form while
half are still in the random form. At any given time
the individual chains “make a choice’ between the two
extreme forms; mixed forms are not favored at small ».

In the region beyond the transition C, most of the
chains are in the helical form, except at the ends,
where the sizable fraction of random configurations
indicated by Eqgs. (33) and (37) remain. The end
effect depends only on s; therefore the fraction of
bonds 8 depends almost entirely on s alone in this
region (compare curves for s=2, Fig. 3).

The end effect is still present in the same way in the
next region of the diagram D at large # and large s,
but disorder also appears in the middle of the chains
as we increase #. This disorder takes the form of short
sequences of broken bonds, as we have already seen.

When we decrease s the amount of disorder increases
in all its manifestations: the length of the breaks,
Eq. (47); the number of independent helical sections,
Eq. (45); and the probability of segments unbonded
at the ends, Eq. (33). Eventually we enter another
branch of the transition region near s=1, point E, as
shown in Fig. 5. A characteristic of this branch is the
fact that single chains contain substantial sections in

(47)
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both helical and random forms in contrast to the situa-
tion encountered in the lower branch of the transition
region. The average combined length of a sequence of
bonded segments followed by a sequence of unbonded
segments is just the reciprocal of P(01), which is
given by Eq. (35) with sufficient accuracy when s is
unity. At the midpoint of the transition the average
length of a helical sequence is half of the reciprocal of
P(01), or ¢7%. The magnitude of this number is note-
worthy. By comparison, if the bonds were arranged
at random, the average length of a bonded sequence
would be two. When we decrease s further the relative
lengths of the random and helical sections dispropor-
tionate rapidly, until finally the chains become almost
purely random in configuration, and we return to the
region of random chains, point F.

Kinetics of Polymerization

The kinetics of polymerization have been found to
show different rate constants when the polymer is in
the helical or random forms. According to Doty
and Lundeberg,'® the addition of monomer to the
helical form occurs several times faster than the addi-
tion to the random form in dioxane solution. Pre-
sumably the rate depends upon the condition of the
nth segment of the helix. For this reason we have
plotted $.(1), Eq. (37), in Fig. 3. Here also the
critical size is important, but the limiting value of
pa(1) at large » is never quite as large as the limiting
value of 6. Doty and Lundberg found that poly-
benzylglutamate in dioxane solution showed a rather
sharp transition in rate of addition of monomer at
about n=8; this would correspond to s=35 if ¢ is as-
sumed to be 10~ as is suggested by the apparent sharp-
ness of the transition and in accordance with the results
cited in the foregoing in the section on temperature
dependence.

Relation to Other Work

Subsequent to Schellman’s original publication® and
more or less simultaneously with each other, a number
of workers have been developing theories of the helix-
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random coil transition. Several preliminary accounts
have already appeared® and others, in addition to
the present paper, are now being published.*'7 Insofar
as we have been able to ascertain, there is substantial
agreement about the results, although considerable
divergence in the methodology and emphasis. Our
justification for adding one more report on the topic
is the fact that we alone seem to have made extensive
use of the matrix method, which allows the simplest
treatment on a unified basis of the various phenomena
of interest for various modifications of the basic model.
It remains to clarify the relation of these results to the
well known demonstration that a one-dimensional
system cannot show a sharp phase transition in the
usual sense. To be exact, the usual demonstration, as
given for example by Landau and Lifshitz® states that
a sharp transition cannot occur unless the boundary
tension between the two phases is infinite, since other-
wise the two phases will always mix with each other to
an appreciable extent. An infinite boundary tension
corresponds in our treatment to o equaling zero which
is the only circumstance under which we find the
transition to be sharp. Thus there is no contradiction.
In fact, the prediction that the two phases will mix
with each other when the boundary tension is finite is in
complete accord with our result that a long chain near
the transition point consists of alternating helical and
random sections. It is this alternation of short sections
of each phase that is characteristic of a one-dimensional
system and that causes the transition to be diffuse.

V. ACKNOWLEDGMENT

We wish to acknowledge gratefully the help of Miss
Ann Warner in performing some and checking others of
the calculations.

oL, Peller, thesis, Princeton University (1957).

u ].)H. Gibbs and E. A. DiMarzio, J. Chem. Phys. 28, 1247
(1958).

2B, H. Zimm and J. K. Bragg, J. Chem. Phys. 28, 1246 (1958).

13 Rice, Wada, and Geiduschek, Discussions Faraday Soc. 25,
130 (1958).

‘45].) H. Gibbs and E. A. DiMarzio, J. Chem. Phys. 30, 271
(1959).

%5 J. A, Schellman (private communication).

16 . Peller (private communication).

7T, L. Hill, J. Chem. Phys. 30, 383 (1959).



